476 research outputs found

    Impact cratering record of Fennoscandia

    Get PDF
    A compilation of circular topographic, morphological, or geophysical structures in Fennoscandia and adjacent areas reveals 62 craterform structures of which 15 appear to be of extraterrestrial origin due to meteorite impact. The majority of the structures are probable and possible impact craters for which there is not yet sufficient proof for impact origin. Four of the proven impact craters contain large volumes of impact melt and many other features of intense shock metamorphism. The age of recognized impact craters vary from prehistoric to late Precambrian. We review the Fennoscandian impact cratering record giving examples of geophysical signatures of impact craters

    Geodynamically consistent inferences on the uniform sampling of Earth's paleomagnetic inclinations

    Get PDF
    Paleomagnetism is a key method to reconstruct the Earth's paleogeography and thus essential for understanding tectonic evolution, but it assumes that the Earth's magnetic field structure has always averaged to a geocentric axial dipole (GAD). The GAD hypothesis may be tested using the observed inclination frequency distribution, but only if continents sampled all of the Earth's latitudes uniformly, which is not known. Here, we provide new insight into the uniform sampling problem by employing a suite of 3D spherical mantle convection models that feature the self-consistent evolution of mantle convection, plate tectonics and continental drift over timescales of 2 Gyr or more. Our results suggest that continents unlikely sampled latitudes uniformly during the Phanerozoic, consistent with previous suggestions. This finding is robust for a variety of geodynamic evolutions with different mantle and lithosphere structures, at least in the absence of true polar wander. For longer sampling durations, uniform sampling typically becomes more feasible, but may only be achieved with confidence after time scales of minimum 1.3 Gyr. This time scale depends on the structure of the mantle and lithosphere and may be shortest when upper mantle viscosity is small such that reduced resistive drag at the cratonic base allows for faster continental drift. Weak plates (low plastic yield strength) promote more dispersed continent configurations, which tends to facilitate uniform sampling. If these conditions are not met, the uniform sampling time scale can easily exceed several billion years. Even the minimum estimate of 1.3 Gyr challenges the validity of using the Phanerozoic inclination frequency distribution to infer the past average magnetic field structure; the approach could however still be applicable using the Precambrian inclination record. (C) 2018 Elsevier B.V. All rights reserved.Peer reviewe

    Archaeomagnetic results from Finnish bricks and potsherds

    Get PDF

    Remote Assisted Task Management for ISOBUS Equipped Tractor-Implement Combination

    Get PDF
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 9 (2007): Remote Assisted Task Management for ISOBUS Equipped Tractor-Implement Combination. Manuscript ATOE 07 011. Vol. IX. July, 2007

    Graft Neutrophil Sequestration and Concomitant Tissue Plasminogen Activator Release During Reperfusion in Clinical Kidney Transplantation

    Get PDF
    Background. Inflammation, coagulation, and fibrinolysis are tightly linked together. Reperfusion after transient ischemia activates both neutrophils, coagulation, and fibrinolysis. Experimental data suggest that tissue plasminogen activator (tPA) regulates renal neutrophil influx in kidney ischemia and reperfusion injury. Methods. In 30 patients undergoing kidney transplantation, we measured renal neutrophil sequestration and tPA release from blood samples drawn from the supplying artery and renal vein early after reperfusion. tPA antigen levels were measured using a commercial enzyme-linked immunosorbent assay kit. For each parameter, transrenal difference (Delta) was calculated by subtracting the value of the arterial sample (ingoing blood) from the value of the venous sample (outgoing blood). Results. Positive transrenal gradients of tPA antigen occurred at 1 minute [Delta = 14 (3-46) ng/mL, P <.01] and 5 minutes [Delta = 5 (-3 to 27) ng/mL, P <.01] after reperfusion. At 5 minutes after reperfusion, a negative transrenal gradient of neutrophils was observed [Delta = -0.17 (-1.45 to 0.24) x 10E9 cells/L, P <.001]. At 1 minute after reperfusion, neutrophil sequestration into the kidney (ie, negative transrenal neutrophil count) correlated significantly with tPA release from the kidney (ie, positive transrenal tPA concentration), (R = -0.513 and P = .006). Conclusions. The findings suggest a proinflammatory role for tPA in ischemia and reperfusion injury in human kidney transplantation.Peer reviewe

    Antimicrobial resistance in Staphylococcus spp., Escherichia coli and Enterococcus spp. in dogs given antibiotics for chronic dermatological disorders, compared with non-treated control dogs

    Get PDF
    The aim of this study was to evaluate antimicrobial resistance in canine staphylococci, Escherichia coli and enterococci, which were isolated from 22 dogs with pyoderma and a history of previous antibiotic treatment, compared to bacterial isolates from 56 non-treated control dogs. Two isolates of each bacterial species per dog were investigated, if detected. Staphylococcal isolates from dogs with pyoderma (35 isolates) were more resistant to sulphatrimethoprim than the isolates from controls (56 isolates) (57% vs. 25%, p < 0.004). Multiresistance in staphylococci was also more common in dogs with pyoderma (29% vs. 9%, p = 0.02). A similar trend among isolates of E. coli was detected (24 and 74 isolates from treated and control dogs, respectively), but the differences were not significant. Resistance for macrolide-lincosamides was approximately 20% among staphylococci in both groups. Resistance to ampicillin among enterococci was 4%–7%. The age of the dogs might have an impact on resistance: multiresistance among staphylococcal isolates from younger dogs (≤5 years) was more common than in older dogs (≥6 years) (24%, vs. 0%, 63 and 27 isolates, respectively, p = 0.02). Staphylococci in younger dogs were more resistant to tetracycline (48% vs. 11%, p < 0.001) and sulphatrimethoprim (48% vs. 15%, p < 0.01) than those in older dogs. In contrast, the isolates of E. coli from older dogs tended to be more resistant, although a significant difference was detected only in resistance to tetracycline (13% vs. 2% of 40 and 50 isolates respecthely, p = 0.04)). The results of this small study indicate that resistance in canine staphylococci in the capital area of Finland is comparable with many other countries in Europe. Resistance in indicator bacteria, E. coli and enterococci, was low

    Genomic rearrangements uncovered by genome-wide co-evolution analysis of a major nosocomial pathogen, Enterococcus faecium

    Get PDF
    Enterococcus faecium is a gut commensal of the gastro-digestive tract, but also known as nosocomial pathogen among hospitalized patients. Population genetics based on whole-genome sequencing has revealed that E. faecium strains from hospitalized patients form a distinct Glade, designated Glade A1, and that plasmids are major contributors to the emergence of nosocomial E. faecium. Here we further explored the adaptive evolution of E faecium using a genome-wide co-evolution study (GWES) to identify co-evolving single-nucleotide polymorphisms (SNPs). We identified three genomic regions harbouring large numbers of SNPs in tight linkage that are not proximal to each other based on the completely assembled chromosome of the Glade A1 reference hospital isolate AUS0004. Close examination of these regions revealed that they are located at the borders of four different types of large-scale genomic rearrangements, insertion sites of two different genomic islands and an IS30-like transposon. In non-Glade A1 isolates, these regions are adjacent to each other and they lack the insertions of the genomic islands and IS30-like transposon. Additionally, among the Glade A1 isolates there is one group of pet isolates lacking the genomic rearrangement and insertion of the genomic islands, suggesting a distinct evolutionary trajectory. In silico analysis of the biological functions of the genes encoded in three regions revealed a common link to a stress response. This suggests that these rearrangements may reflect adaptation to the stringent conditions in the hospital environment, such as antibiotics and detergents, to which bacteria are exposed. In conclusion, to our knowledge, this is the first study using GWES to identify genomic rearrangements, suggesting that there is considerable untapped potential to unravel hidden evolutionary signals from population genomic data.Peer reviewe

    Plasmids Shaped the Recent Emergence of the Major Nosocomial Pathogen Enterococcus faecium

    Get PDF
    Enterococcus faecium is a gut commensal of humans and animals but is also listed on the WHO global priority list of multidrug-resistant pathogens. Many of its antibiotic resistance traits reside on plasmids and have the potential to be disseminated by horizontal gene transfer. Here, we present the first comprehensive population-wide analysis of the pan-plasmidome of a clinically important bacterium, by whole-genome sequence analysis of 1,644 isolates from hospital, commensal, and animal sources of E. faecium. Long-read sequencing on a selection of isolates resulted in the completion of 305 plasmids that exhibited high levels of sequence modularity. We further investigated the entirety of all plasmids of each isolate (plasmidome) using a combination of short-read sequencing and machine-learning classifiers. Clustering of the plasmid sequences unraveled different E. faecium populations with a clear association with hospitalized patient isolates, suggesting different optimal configurations of plasmids in the hospital environment. The characterization of these populations allowed us to identify common mechanisms of plasmid stabilization such as toxin-antitoxin systems and genes exclusively present in particular plasmidome populations exemplified by copper resistance, phosphotransferase systems, or bacteriocin genes potentially involved in niche adaptation. Based on the distribution of k-mer distances between isolates, we concluded that plasmidomes rather than chromosomes are most informative for source specificity of E. faecium. IMPORTANCE Enterococcus faecium is one of the most frequent nosocomial pathogens of hospital-acquired infections. E. faecium has gained resistance against most commonly available antibiotics, most notably, against ampicillin, gentamicin, and vancomycin, which renders infections difficult to treat. Many antibiotic resistance traits, in particular, vancomycin resistance, can be encoded in autonomous and extrachromosomal elements called plasmids. These sequences can be disseminated to other isolates by horizontal gene transfer and confer novel mechanisms to source specificity. In our study, we elucidated the total plasmid content, referred to as the plasmidome, of 1,644 E. faecium isolates by using short- and long-read whole-genome technologies with the combination of a machine-learning classifier. This was fundamental to investigate the full collection of plasmid sequences present in our collection (pan-plasmidome) and to observe the potential transfer of plasmid sequences between E. faecium hosts. We observed that E. faecium isolates from hospitalized patients carried a larger number of plasmid sequences compared to that from other sources, and they elucidated different configurations of plasmidome populations in the hospital environment. We assessed the contribution of different genomic components and observed that plasmid sequences have the highest contribution to source specificity. Our study suggests that E. faecium plasmids are regulated by complex ecological constraints rather than physical interaction between hosts.Peer reviewe

    Evo-devo of human adolescence: beyond disease models of early puberty

    Get PDF
    Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research
    corecore